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We show that the low-lying spin states of two electrons in a semiconductor quantum dot can be strongly
mixed by electron-electron asymmetric exchange. This mixing is generated by the coupling of the electron spin
to its orbital motion and to the relative orbital motion of the two electrons. The asymmetric exchange can be
as large as 50% of the isotropic exchange, even for cylindrical dots. The resulting mixing can contribute to
understanding spin dynamics in dots, such as recent observations of light polarization reversal.
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An electron spin in a semiconductor quantum dot �QD� is
an attractive qubit for quantum computing:1 the spin in the
ground orbital state can have a long coherence time;2 a single
qubit can be initialized or read optically by transient
electron-hole pair excitation giving a negative trion X−;3,4

and the manipulation of the spin exchange between spins can
be the basis for two-qubit gates.1 The correlations between
spins control coherence in gates. The dominant interaction
between two electrons �e-e� is the symmetric exchange
Jŝ1 · ŝ2, which conserves the total spin Ŝ. Additional spin-
asymmetric e-e interactions �asymmetric exchange� do not
conserve Ŝ and can cause decoherence.

Examples of recent experiments on spin dynamics are
those involving optical polarization reversal.3,4 They involve
spin flipping due to electron-hole �e-h� exchange in QDs
with lateral asymmetry. It has been noted that those experi-
ments require strong spin mixing, inconsistent with e-h ex-
change alone.4

Spin-orbit �SO� interactions play a key role in the mixing
of spin states. They arise from effective magnetic fields of
the orbital motion of electrons.5 Electrons in QD ground
states with dominant s components have small orbital angu-
lar momentum and small SO coupling. A number of experi-
ments involve electrons in excited states. Linear combina-
tions of nearly degenerate excited states in a plane �e.g., px-
and py-like� can give rise to two-dimensional �2D� orbital
motion with an effective magnetic field perpendicular to the
plane, and thus to large SO coupling. This is analogous to the

L̂ · Ŝ coupling in atoms. Thus, symmetric QDs �e.g., cylindri-
cal� can have significant SO effects.

There are three sources of SO coupling that lead to mix-
ing of spin states. The largest two contributions arise from
the k · p̂ mixing of the conduction and valence bands and can
be described in the effective mass approximation.6 We derive
them by treating the potentials from the structure and the e-e
Coulomb repulsion on the same footing with k · p̂ terms using
the Kane model.7 We have in mind QDs with a strong con-
finement in a single state ��z� in the vertical direction ez and
weaker confinement in the transverse directions, which gives
the single-particle electron states �i�r�=��z��i���.

A single-electron contribution to the SO coupling, ĥV,
arises from the 2D structure potential V�r�:8

ĥV · ŝ = �s
V��zV�p̂� � ŝ�� + ���V � p̂��ŝz�ez. �1�

p̂z is not present due to the strong vertical confinement �for a
single state ��z�, �� � pz ���=0�. The first term is the usual

Rashba coupling �V�ez� p̂�� from the asymmetry in the
growth direction,9 where �V=�s

V�� ��zV ���.10 The second
term is important between �almost� degenerate excited states,
e.g., px- and py-like, where it gives the dominant SO cou-
pling independent of structure or bulk inversion asymmetry;
it is negligible in the ground state, whose main component is
inversion symmetric �s-like�.

The second contribution, ĥC, is from the interaction of
each spin with the other electron’s orbital motion. We obtain
it using a two-particle k · p̂ approach for electrons interacting
through the Coulomb potential11 UC�rr�=e2 /�rr �� is the di-
electric constant; rr=r1−r2�:

ĥk
C · ŝk = �− 1�k�s��rr

UC � p̂k� · ŝk, �2�

where k=1,2. ĥV is analogous to the Pauli SO interaction,

while ĥC is analogous to the Breit-Pauli spin–relative-orbit
coupling.5 These couplings in vacuum or in atoms are rela-
tivistically small due to the large energy gap 2m0c2 between
electron and positron bands, whereas the present gap Eg is
smaller giving larger SO couplings.

A smaller contribution, ĥB, comes from the Dresselhaus
coupling due to the lack of bulk inversion symmetry.12 It
arises from the mixing of the conduction band with the
remote upper bands. In QDs with strong vertical confinement
��pz2�� �p�2��, it reduces to hB,���B�p̂x ,−p̂y�, where �B

=�b
B�� � pz

2 ���.12

We use a model13 of QDs like those from self-assembled
growth along the crystal axis �001�. The lateral potential
V��� contains Vs symmetric for the inversion �→−�, and it
may also contain an inversion-asymmetric part Va. The lat-
eral parameters Dx,y of the potential provide a measure for
the QD size. A nonzero asymmetry Va=Vax+Vay �Vax odd in
x, and Vay odd in y� implies a nonzero average lateral electric
field Ex,y. The inversion asymmetry is parametrized in Vax by
Ex, and in Vay by Ey. We can write Ex,y �Ex,y /Dx,y.

13

First, we consider the orbital eigenstates of the two-
particle Hamiltonian H0 containing the Coulomb interaction
UC but not the SO couplings. H0 has an inversion-symmetric
part �p̂1

�2+ p̂2
�2� /2m+Vs��1�+Vs��2�+UC�rr�+�c��rr�, and

an inversion-asymmetric part Va��1�+Va��2�. From their
permutation symmetry, the eigenstates are separated into
triplets 	Ti
 �asymmetric� and singlets 	Sj
 �symmetric�. We
build a basis for each group from products of single-particle
wave functions. We use a large set of harmonic oscillator
wave functions obtained from the average curvatures of the
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potential and grouped in four subspaces 	s
, 	x
, 	y
, and 	d
,
by their orbital symmetry: s symmetry �even in x and y�, x
�odd in x�, y �odd in y�, d �odd in x and y�. The triplet basis
		m
 contains asymmetric combinations such as 	sx= �sx
−xs� /�2, and has four independent subspaces, of symmetry
s, x, y, and d: 		ss� ,	xx� ,	yy� ,	dd�
, 		sx ,	yd
, 		sy ,	xd
,
		xy,	sd
. The orbital singlet basis 	
n
 is given by symmetric
combinations such as 
ss�= �ss�+s�s� /�2 �s�s�� and 
ss

=ss, and it has four subspaces 	
ss� ,
xx� ,
yy� ,
dd�
,
	
sx ,
yd
, 	
sy ,
xd
, and 	
xy,
sd
. These subspaces are not
mixed by the inversion-symmetric part of H0. The inversion-
asymmetric part of H0 couples the singlet subspaces among
themselves by terms linear in Ex,y and the triplet subspaces
among themselves. The eigenstates of H0 have several com-
ponents from different subspaces:

T1 = T1
x + ExT1

s + ExEyT1
y + EyT1

d,

S3 = S3
y + EyS3

s + ExEyS3
x + ExS3

d, �3�

and similarly for T2 and S2. Here T1 �T2� labels the lowest
triplet with a dominant x �y� component and S2 �S3� labels
the lowest singlet with a dominant x �y� component. T1

x is the
projection of T1 on the x-symmetry triplet subspace, etc. The
lowest states are shown in Fig. 1�a� where Ey =0. Higher
states not shown are T3 �T4�, which are the lowest d- �s-�
dominant triplets, and S4 �the lowest d-dominant singlet�.
The isotropic part of the exchange for triplet Ti �energy �i

t�
and singlet Sj �energy � j

s� is given by Jij =2��i
t−� j

s� /�2. In this
work we choose the energy splitting between the electron
ground and excited states to be in the range 20–45 meV; this
gives an exchange splitting �J13 between T1 and S3� of the
order 5–10 meV, in the range of experiments.4

Next, the triplet-singlet mixing comes from the SO terms

hV, hC, hB added to H0. These give a Hamiltonian composed

of a spin-symmetric part Hs that conserves the total spin Ŝ
= ŝ1+ ŝ2 and a spin-antisymmetric part Ha:

Hs = H0 +
1

2
�ĥ1 + ĥ2 + �s��r

UC � p̂r
�� · Ŝ ,

Ha =
1

2
�ĥ1 − ĥ2 + 2�s��r

UC � p̂c
�� · �ŝ1 − ŝ2� , �4�

where ĥk= ĥk
V+ ĥk

B, p̂r= p̂1− p̂2, and p̂c= �p̂1+ p̂2� /2. Ha can be
written as

Ha = �
i,j

�ij · �ŝ1 − ŝ2��Ti��Sj� + H . c . , �5�

where �ij = �Ti�ĥ1+�s��r
UC� p̂c

��Sj� gives the asymmetric

exchange. States of different total spin Ŝ are coupled via the
operator ŝ1− ŝ2 equivalent to the Dzyaloshinskii-Morya form
2i / � �ŝ1� ŝ2�.14 We can write

� · �ŝ1 − ŝ2� = z�ŝ1
z − ŝ2

z� + �� · �ŝ1
� − ŝ2

�� . �6�

z conserves the total spin projection Sz, i.e., it mixes sin-
glets with triplets with Sz=0 �“longitudinal mixing”�. This is
equivalent to a precession of the total spin around ez ��Sz

=0�. �� mixes states with different spin projections ���Sz �
�0� �“transverse mixing”�. The degree of triplet-singlet mix-
ing is given by the ratio of the asymmetric to the symmetric
exchange: �ij

z =�−1ij
z /Jij , �ij

�=�−1�ij
� /Jij.

We group the operators giving �ij in Eq. �5� into an axial

vector operator Â Âez and two polar vector operators P̂
 P̂ez, R̂ R̂�:

Â = 2�s
V��̂�1

Vs � �̂�1
� − 2�s���r

UC � �̂�c
� ,

P̂ = 2�s
V��̂�1

Va � �̂�1
� ,

R̂ = − 2�V�ez � �̂�1
� + 2�B�ex�̂x1

− ey�̂y1
� . �7�

Â and P̂ include the vertical magnetic field from the 2D
motion in the nearly degenerate excited states, and they gen-

erate z. R̂ arises from the Rashba and Dresselhaus terms,
and it generates ��.

Table I gives the matrix elements between Ti �i=1,4� and

Sj �j=1,4� �Eq. �3�� from the spin mixing operator Â in Eq.
�7�. The states are characterized by the symmetry of their
dominant wave function components, e.g., S2 �x symmetry.

Table II gives corresponding results from P̂. The terms in
small boxes on the second diagonal in Table I are dominant
and are independent of lateral asymmetries. All the other
terms in Tables I and II are nonzero only for cases of lateral
asymmetry. The central 2�2 block highlighted is of interest
for the dynamics of X− in the “p” shell.3,4

The matrix elements in Tables I and II can be understood

by writing the operators in the basis 		m ,
n
: Â+ P̂
=�m,n�Amn+ Pmn�ez �	m��
n � +H.c. The matrix elements Aij

�

and Pij
� in the tables are given by sums of matrix elements

Amn and Pmn, respectively, with the same symmetry. From
Eq. �7�, it is seen that Amn is nonzero only for �	m��
n� odd

both in x and in y. Thus Â can produce longitudinal mixing
ij

z between two-electron eigenstates Ti and Sj if one of these
contains an x- �s-� symmetry component, and the other has a
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FIG. 1. �Color online� QDs with diameters Dx=Dy =D. �a� Two-
electron energy levels in QDs with D=19 nm with one plane of
symmetry along ex �Ey =0� vs the lateral asymmetry parameter Ex

�the average field is Ex=10.1Ex meV/nm�. �b� The asymmetric ex-
change ��13

z � =�−1 �13
z /J13� and its components ��13

z,V� �from the SO
coupling �Eq. �1���, ��13

z,C� �from the spin–relative-orbit coupling
�Eq. �2��� vs the QD size D. �c� ��13

z � vs Ex �Ey =0� for several QDs.
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y- �d-� symmetry part �Table I�. Pmn is nonzero only for
nonzero QD asymmetries �Va�0� and for �	m��
n� odd either

only in x or only in y. Thus, P̂ contributes to the longitudinal
spin mixing ij

z between Ti and Sj if one of them has an s or
d component and the other has an x or y component �Table

II�. R̂ can be written as R̂=�m,nRmn
� �	m��
n � +H.c. Results

for the matrix elements of Rmn
� are not given explicitly here.

They require QD lateral asymmetry and are nonzero for
�	m��
n� odd in one of x or y. They can give transverse spin
mixing �ij

� of states with different z spin projections.
We now consider QDs with several symmetries and the

longitudinal spin mixing �z from them. This longitudinal
mixing does not have contributions from the Dresselhaus and
Rashba couplings.

(i) QDs with lateral inversion symmetry �Ex=Ey =0�. Ex-
amples are shown in Fig. 1�b� and by the Ex=0 points in
Figs. 1�a� and 1�c� and Fig. 2�a�. In such QDs, the two-
electron states Ti ,Sj �Eq. �3�� have well-defined symmetries.

The spin mixing is due only to Â on the second diagonal �in
small boxes� in Table I. “Pure” states of x �y� symmetry such
as T1 �T2� couple only to “pure” states of y �x� symmetry

such as S3 �S2�. The first-order longitudinal spin mixing of T1
�T2� is given by the coupling S3 �S2�, because this is the
closest in energy. T3 �the lowest d-symmetry triplet� couples

by Â to s-symmetry singlets like S1. T4 �the lowest

s-symmetry triplet� couples by Â to d-symmetry singlets
such as S4.

From Figs. 1�b� and 2�a� �at Ex=0�, the asymmetric ex-
change can be a substantial fraction of the symmetric ex-
change �up to �50%�. From Fig. 1�b�, the asymmetric ex-
change is smaller for larger QDs, which results from larger
orbits giving smaller effective magnetic fields in the SO cou-
pling. In this case 22

z =−13
z because of degeneracy. The or-

bital momentum L̂z eigenstates �S2± iS3� /�2 are strongly
coupled to �T1± iT2� /�2 and Lz is conserved. From Fig. 2�a�,
the asymmetric exchange decreases as the degeneracy of the
first two excited states is removed when Dx�Dy. In this case
Lz is not conserved. The stronger confinement along ey �Dx

�Dy� leads to J13�J22, and thus to ��13
z � � ��22

z �.
(ii) QDs with a single vertical plane of reflection �Ex�0

and Ey =0�. This gives more nonzero matrix elements in
Tables I and II, e.g., now T4 is mixed with S3 as well as with

TABLE I. The part of the longitudinal coupling ij
z from Â �Eq. �7��. The matrix elements Aij

�= �Ti
� � Â �Sj

� are between components of
definite symmetries Ti

�, Sj
 of the orbital wave functions Ti, Sj �Eq. �3��.

TABLE II. The part of the longitudinal coupling ij
z from P̂ �Eq. �7��. Pij

�= �Ti
� � P̂ �Sj

� are between wave function components of definite
symmetry �Eq. �3��.
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S4. This case corresponds to Figs. 1�a�, 1�c�, and 2�a�. �13
z for

the lowest triplet decreases with increasing Ex. For these
cases, the terms proportional to Ex and Ex

2 in Table I and also
the terms from P=2�̃V���1

Vax� �̂�1
�mn

z �Ex from Table II are
nonzero, and they tend to cancel partially the larger terms in
the boxes in Table I. For some triplet-singlet pairs, such as S3
and T1, the symmetric exchange becomes larger and thus
their mixing decreases. Other singlet-triplet pairs can be de-
generate, such as T2 and S2 in Fig. 1�a� at Ex�1.5; then a
nonzero 22

z leads to strong singlet-triplet mixing �Fig. 2�a��.
For this case, Lz is not conserved. Triplets with �L̂z�� ±� can

be coupled to singlets that have �L̂z�� ��.
(iii) QDs with no vertical plane of reflection �Ex�0 and

Ey �0�. Then all states in Tables I and II are mixed, and the
longitudinal spin mixing can be larger than in previous cases.

In addition to the longitudinal spin mixing above, there is
also mixing that changes the spin projection Sz �transverse
mixing ���. It is exclusively from the Dresselhaus and
Rashba couplings, which give R in Eq. �7�. For lateral inver-
sion symmetry, R mixes states which typically differ by the
single-particle energy splitting, e.g., T1 with S1 and S4, etc.

Then the mixing from R̂ is small, due to large J11 and J14.

For QDs with only one vertical plane of reflection, R̂ mixes
T1 with S2 or S3, which are closer in energy and therefore
give larger mixing. We show in Fig. 2�b� this transverse spin
mixing for T1 and S2. It occurs only for nonzero asymmetric
potential �Ex�0�. It is generally smaller than the longitudi-
nal spin mixing but can become appreciable for large asym-
metries, and it is larger in smaller QDs.

We have shown that when the splitting between the elec-
tron p-states in a QD is small there can be strong mixing
between electron excited singlets and triplets. This mixing
can be important in optical manipulations of spins in QDs
and can lead to dephasing and loss of fidelity in gates. For
example, these results can help in interpretations of light
polarization reversal experiments. These interpretations in-
volve electron singlet-triplet mixing. A contribution to the
latter comes from e-h axially-asymmetric exchange in later-
ally asymmetric QDs. The e-e asymmetric exchange pre-
sented here provides an additional contribution, which is im-
portant in particular for laterally symmetric QDs. The
present results also suggest an additional process in such
experiments. Typically in optical pumping, the orbital angu-
lar momentum from light is stored in the hole motion and the
electron is in an s state. For states with an excited electron,
the electrons can carry the orbital angular momentum. The
e-e asymmetric exchange can mix two-electron states that
differ in their orbital angular momentum leading to emission
of light with reversed polarization.

Finally, in gated QDs, which are typically larger, the mix-
ing discussed here between triplets and excited singlets is
smaller �Fig. 1�b��. Nevertheless, in situations like spin trans-
port with a bias through gated QDs,15 the lowest singlet can
be brought close to the ground state singlet and the mixing
between them can become important.
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